

Alice

Descartes

Buddhist Monks Debating

PHIL 50 - Introduction to Logic

Marcello Di Bello, Stanford University, Spring 2014

Week 3 — Friday Class - Derivations in Propositional Logic (CONTINUED)

Rules From Wednesday

RAA is a Powerful Derivation Rule

Admirable Consequence (consequentia mirabilis)

Consider the proposition "I exist"

Let's assume for the sake of argument that its negation holds, i.e. "I do not exist."

If I do not exist, in order to entertain the proposition "I do not exist" I need to exist, whence "I exist."

Descartes (sort of...)

Establishing $\vdash (\neg \phi \rightarrow \phi) \rightarrow \phi$

And Now the Rules for v

Rules for v

Proof by Cases: Alice in Wonderland

Soon her eye fell on a little glass box that was lying under the table: she opened it, and a found a very small cake, on which the words "EAT ME" were beautifully marked in currants.

"Well, I'll eat it, " said Alice, "and **if it makes me larger**, I can reach the key; and **if it makes me smaller**, I can creep under the door; so **either way I'll get into the garden**. Proof by Cases: Buddhist Logic

If something is known, giving a definition of it is useless.

If something is not known, giving a definition of it is impossible, and hence useless.

Either way giving a definition of something is useless.

Theodore Stcherbatsky, Buddhist Logic

On Rule vE

If by assuming ϕ , one can derive σ , and by assuming ψ , one can also derive σ , then one can derive σ from $\phi \lor \psi$.

The formula $\phi \lor \psi$ will become a new assumption unless it is the result of another independent derivation.

Establishing $\vdash (\phi \lor \psi) \rightarrow (\psi \lor \phi)$

Summary: Second Batch of Rules

Summary: First Batch of Rules (Monday)

Derivability: ⊢

 $\vdash \psi$ *iff* there is a derivation of ψ in which all assumptions are canceled.

$\phi_1, \phi_2, ..., \phi_k \vdash \psi$ *iff* there is a derivation of ψ from assumptions $\phi_1, \phi_2, ..., \phi_k$

The Equivalence of \vdash and \models

 $\phi_1, \phi_2, \ldots, \phi_k \vdash \psi$ $\overline{\Lambda}$ **COMPLETENESS SOUNDNESS** $\phi_1, \phi_2, \ldots, \phi_k \models \psi$

More on this next week....